Survey of Computational Science and Engineering Graduate Programs Results as of 1/12/12 Below is a summary of the Survey of Computational Science and Engineering Graduate Programs that was conducted during November and December 2011. The full details of the survey can be found at: http://icl.cs.utk.edu/survey/summary/. If you would like to take the survey see: http://icl.cs.utk.edu/survey/. Thanks again, Jack Dongarra (University of Tennessee) Linda Petzold (University of California, Santa Barbara) Vladimir Voevodin (Moscow State University) ## **Computational Science and Engineering Survey** - 66 participants started the survey - Defining Computational Science and Engineering: - 41.8% define CSE as mathematical modeling, numerical methods, and high performance computing. - o 3.6% define CSE as computing that focuses more on the science or engineering outcome than on the computational methodology. - o 54.5% defined CSE as falling into both of the above categories. ## **Graduate Programs** - 59 (89%) of participants have a graduate CSE program - 55 (93%) of these programs have websites: | Institution | Website URL | |---------------------------------|--| | Bogazici University, Istanbul | http://www.cse.boun.edu.tr/ | | Brockport, State University of | http://www.brockport.edu/cps/ | | New York | | | California Institute of | http://www.cse.caltech.edu/ | | Technology | | | Cornell University | http://www.cis.cornell.edu/cse/ | | EPFL Lausanne | http://cse.epfl.ch/ | | ETH Zurich, Switzerland | http://www.cse.ethz.ch/ | | George Mason University | http://cds.gmu.edu/content/phd-computational-sciences- | | | and-informatics/ | | Georgia Institute of Technology | http://www.cseprograms.gatech.edu/ | | Harvard | http://iacs.seas.harvard.edu/secondary-field-in- | | | cse/secondary-field-in-cse/ | | K.U. Leuven | http://www.cs.kuleuven.be/wit/ | |-----------------------------------|--| | KTH Royal Institute of | http://www.kth.se/en/studies/programmes/em/cosse | | Technology Stockholm | | | Louisiana Tech | http://www.latech.edu/coes/cam/ | | McMaster University | http://computational.mcmaster.ca/ | | Michigan Tech | http://www.mtu.edu/gradschool/programs/degrees/comput | | | ational/ | | Middle East Technical | http://www3.iam.metu.edu.tr/iam/index.php/Cryptography | | University | | | Middle East Technical | http://www3.iam.metu.edu.tr/iam/index.php/Scientific_Com | | University | puting | | Mississippi State University | http://www.hpc.msstate.edu/education/ | | MIT | http://web.mit.edu/cdo-program/ | | Moscow State University | http://www.srcc.msu.ru/nivc/index_engl.htm | | National Institute of | http://nitc.ac.in/ | | Technology Calicut | incept/inceacting | | National University of Ireland, | http://www.nuigalway.ie/courses/research-postgraduate- | | Galway | programmes/structured-phd/physics.html | | New York University | | | Penn State | http://math.nyu.edu/degree/ms/scicomputing.html | | | http://www.csci.psu.edu/ | | Queen Mary University of | http://www.sems.qmul.ac.uk/pgadmissions/programmes/?co | | London | mputationalaidedengineering | | RWTH Aachen University | http://www.aices.rwth-aachen.de/ | | Second University of Naples | http://www.diam.unina2.it/ | | Seoul National University | http://cst.snu.ac.kr/ | | Simon Fraser University | http://www.math.sfu.ca/graduate/prospective_students#apm | | | <u>a</u> | | Stanford University | http://icme.stanford.edu/ | | Technical University of | http://www.dtu.dk/subsites/mmc-master.aspx | | Denmark | | | Technische Universität | https://www.tu-braunschweig.de/cse/ | | Braunschweig | | | Technische Universität | http://www.cse.tum.de/ | | München | | | TU Dortmund | http://www.tu- | | | dortmund.de/uni/Einstieg/studienangebot/kurzinfos/1fach/ | | | natur/fk01_technomath_bama/index.html | | University of Bristol | http://www.cs.bris.ac.uk/Teaching/Resources/COMS35101/ | | University of California, Santa | http://www.cse.ucsb.edu/ | | Barbara | | | University of Colorado at | http://amath.colorado.edu/cmsms/index.php?page=suppleme | | Boulder | nt-to-the-catalog-2011-2012 | | University of Delaware | http://www.math.udel.edu/CinCSE | | University of Dublin, Trinity | http://www.maths.tcd.ie/hpcmsc/ | | College | | | University of Edinburgh | http://msc.maths.ed.ac.uk/sc/index/ | | University of Illinois at Urbana- | http://www.cse.illinois.edu/ | | y | * | | Champaign | | |--------------------------------------|---| | University of Iowa | http://www.amcs.uiowa.edu/ | | University of Michigan | http://www- | | , G | ners.engin.umich.edu/areas/scientificcomputing/ | | University of New Mexico | http://www.hpc.unm.edu/education/cse-program/ | | University of Ontario | http://www.science.uoit.ca/graduate/modelling_and_computa | | • | tionalscience/index.php | | University of Pennsylvania | http://www.amcs.upenn.edu/ | | University of Tennessee, | http://www.utc.edu/Research/SimCenter/ | | Chattanooga | | | University of Tennessee, | http://igmcs.utk.edu/ | | Knoxville | | | University of Texas at Austin | http://www.ices.utexas.edu/ | | University of Texas at El Paso | http://academics.utep.edu/Default.aspx?tabid=61122 | | University of Utah (MS) | http://www.ces.utah.edu/ | | University of Utah (PhD) | http://www.cs.utah.edu/graduate/scientific/ | | University of Warwick | http://go.warwick.ac.uk/csc/ | | University of Waterloo | http://www.math.uwaterloo.ca/navigation/CompMath/ | | Uppsala University | http://www.it.uu.se/edu/masters/CompSc/ | | William & Mary | http://www.cs.wm.edu/ | Types of graduate programs: o A degree in CSE: 41 o A minor in CSE: 7 o A certificate in CSE: 6 o A track in CSE 2 Program inception dates: Average time to establish graduate program: 2 years - Student Enrollment and graduation for graduate programs - o Master's programs - Current enrollment: 26.7 mean; 12 median - Mean Gender Distribution: 28% female, 72% male - Graduates: 275 mean; 23 median - Mean Gender Distribution: 29% female, 71% male - o PhD programs - Current Enrollment: 21.7 mean; 10 median - Mean Gender Distribution: 25% female, 75% male - Graduates: 22.4 mean; 4.5 median - Mean Gender Distribution: 28% female, 72% male • 92.5% of the CSE graduate programs have a core curriculum: | Institution | Curriculum | |---------------------------|--| | Bogazici University, | 8 courses (a Math course, a Numerical Analysis course, 2 area electives, 3 | | Istanbul | computational electives, 1 computational project), 2 seminar courses, and thesis. | | Brockport, State | Core courses (12 credits): CPS 533 Scientific Visualization (3), CPS 602 | | University of New | Advanced Software Tools (3), CPS 604 Comp Methods in the Physical Sciences | | York | (3), CPS 644 Supercomputing and Applications (3). Research experience (6 | | | credits): CPS 699 Independent Study (3), CPS 710 Thesis (3). Electives Credits | | | (12 credits) - Computational-X courses in an area of application: At or above the | | | 500 level (6 credits), At or above the 600 level (6 credits). | | College of William | All requirements of the Computer Science track with the Computational | | and Mary | Methods course required. In addition, at least one course from another | | | department (typically physics, applied science, or math). | | Cornell University | Three courses taken from a "core list" and breadth list. | | EPFL Lausanne | http://cse.epfl.ch/CurrentStudy-plan | | | http://cse.epfl.ch/files/content/sites/cse/files/MA-CO_master2011.pdf | | ETH Zurich, | Core courses, field of specialization, term paper, electives, master thesis, | | Switzerland | optionally PhD thesis. | | George Mason | 48 hours coursework beyond BS, 24 hours research. | | University | | | Georgia Institute of | Pick 4 (of 5) core courses, Computation specialization, Application | | Technology | specialization | | Harvard University | 4 courses: 2 in Applied Math and 2 in Computer Science; each student must take | | | 2 of these in addition to 2 computation-intense electives. | | K.U. Leuven | We have 8 obligatory courses. The students complete their program by | | | choosing from a variety of courses, organized under the headings: Industrial | | | Process Control, Data-mining, Image Processing, Scientific Computing and | | | Simulation, Cryptography. The eight core courses are: Numerical simulation of | | | differential equations, System identification and modeling, Optimization, | | | Technical Mathematics, Computer based control techniques, Nonlinear systems, | | | Case studies in mathematical engineering, Technical-Scientific Software. More | | | info with complete list of courses here (site in Dutch only!): | | TARREST D. L. C. C. | http://onderwijsaanbod.kuleuven.be/opleidingen/n/SC_51016867.htm | | KTH Royal Institute | The COSSE master's programme is a two-year programme including | | of Technology | compulsory mobility for the students. They will enter in one of the universities | | Stockholm | (the "home university") and continue the second year at one of the other | | | universities in another country (the "host university"). The first 60 ECTS credit | | | points are taken at the home university and the remaining 60 ECTS credit points | | | are taken at the host university. The programme includes three semesters of | | | courses followed by the fourth research semester spent on the Master's Thesis | | | (30 ECTS) under the supervision of both the home and the host university.
Compulsory courses: Numerical Analysis, Applied Mathematics, Scientific | | | Computing. Conditionally elective courses: preparation for specialization, | | | specialization courses (compulsory and elective). | | Louisiana Tech | Course work, qualifying and comprehensive exams, dissertation. | | University | Course work, quantying and comprehensive exams, dissertation. | | McMaster University | Foundations of Modern Scientific Programming, Foundations of Scientific | | wich aster University | Computing, Advanced Computational Methods and Models | | | companing, riavancea companinonal meniodo and modelo | | Middle East | Scientific Computing I & II, Numerical Optimization, Mathematical Modeling, | |-------------------------------|---| | Technical University | Statistical Learning and Data mining, Inverse Problems, Finite Elements, | | • | Applied Nonlinear Dynamics. | | Middle East | Core Courses: IAM 501 Introduction to Cryptography (3-0) 3, IAM 502 Stream | | Technical University | Ciphers (3-0) 3, IAM 503 Applications of Finite Fields (3-0) 3, IAM 504 Public | | - Institute of Applied | Key Cryptography (3-0) 3, IAM 512 Block Ciphers (3-0) 3, IAM 589 Term | | Mathematics / | Project (0-2) NC, IAM 590 Graduate Seminar (0-2) NC, IAM 500 M.S. Thesis | | Cryptography | (Non-credit), and two electives. | | program | (11011 of call), and two of call vos. | | MIT | Coursework and Thesis | | National Institute of | Applied and Pure Mathematics Papers. | | | Applied and rule matternatics rapels. | | Technology, Calicut,
India | | | | Numerical Mathada I & II. Fundamental Algorithma Mathada of Applied Math. | | New York University | Numerical Methods I & II; Fundamental Algorithms; Methods of Applied Math; | | | Programming Languages; Open Source Tools; Computer Graphics; Fluid | | D. Civi | Dynamics; 2 electives; a master's thesis. | | Penn State | See http://www.csci.psu.edu/ | | Queen Mary, | Mechanics of Continua, Computational Engineering (FEM), C++ Programming, | | University of London | Computational Fluid Dynamics, Research Methods, Numerical Optimisation + | | | specialist graduate level modules from Mech/Aero/Energy/Biomedical | | | Engineering | | RWTH Aachen | M.Sc. 90-120 credits, PhD short courses. | | University | | | Second University of | Previous courses in Numerical Analysis and PDE. | | Naples | | | Seoul National | Course: Advanced Programming for Scientific Programming, Parallel Scientific | | University | Computation, Scientific Computational Modeling, Advanced Matrix Compute | | • | Topics in Advance Scientific Computation, Topics in Advance Parallel | | | Computation, Topics in Advanced Computational Modeling. | | Simon Fraser | MSc program requires 7 courses in total. Four courses are chosen from: | | University | Advanced Mathematical Methods I, Advanced Mathematical Methods II, | | • | Numerical Linear Algebra, Numerical Solution of Partial Differential Equations, | | | Fluid Dynamics, Analysis and Computation of Models. Plus two more graduate | | | courses. Plus one more graduate or undergraduate course. Plus a Master's thesis | | | and oral defense. The PhD program has the same course requirements as the | | | MSc plus two more graduate courses. Plus the PhD thesis and oral defense. | | Stanford | 6 core courses, 2-3 programming courses, and 9-12 elective courses. | | Technical University | General competence courses (30 ECTS), Technological specialization courses | | of Denmark | (30 ECTS), Electives (30 ECTS), Thesis (30 ECTS). | | Technische | Computer Science, Applied Mathematics, Scientific Computing, Application | | Universitaet | Area (e.g. Computational Mechanics, Computational Fluid Dynamics, | | Muenchen | Computational Electronics, Algorithms in Scientific Computing, Parallel and | | | Distributed Computing, High Performance Computing). | | Technische | Basic Core Courses - ENG: Foundations of Natural and Engineering Sciences; | | Universität | MCS: Foundations of Mathematics and Computer Science. Elective Core | | Braunschweig | Courses - ENG: Computational Methods in Engineering Sciences; MCS: | | Di aunschweig | Applied Mathematics and Computer Science. In-Depth-Courses - | | | Specializations Courses, Specialization Project, Seminar Presentation, Master | | | | | | Thesis. | | The University of | Core courses in three areas: Area A is Applicable Mathematics, Area B is | |------------------------|--| | Texas at Austin | numerical Analysis and Scientific Computing, and Area C is Mathematical | | | Modeling and Applications. | | The University of | 2 core courses in computational science, 4 prescribed classes (approved list from | | Texas at El Paso | science & engineering courses), 7 free elective classes (approved list from | | | science & engineering courses). | | Trinity College | C programming, numerical methods, stochastic methods, high-performance | | Dublin | computing software, high-performance computing architecture, software | | | development tools, financial mathematics, monte carlo methods. | | TU Dortmund | For MS/BSc: 60% math/computing, 40% engineering (focus within engineering | | 102011111111 | chosen by the students, examples include classical continuum mechanics but | | | also life sciences etc.). For BSc: 60% math includes classical applied math | | | curriculum with opportunities to specialize early, and mandatory computing | | | portions. Highlight: 2-semester-10-student project group covering the entire | | | CSE cycle from engineering problem to mathematical modeling to | | | algorithms/discretisations to implementations (with HPC in mind) to post | | | processing. For MS: advanced topics with only loose rules on what to specialize | | | in/where to stay in general. | | University of Bristol | Undergraduates must choose from a number of parallel tracks, one of which is | | oniversity of Briston | HPC, others including security, data mining and machine learning, embedded | | | systems, microelectronics, etc. Lots of both hardware and software. | | University of | Numerical Methods: at least 3 courses from a 4-course menu; Parallel | | California Santa | Computing: 1 course; Applied Mathematics: a 2-course sequence. | | Barbara | Computing. I course, Applied Mathematics. a 2 course sequence. | | University of | PHD Numerical PDEs, Parallel Computing, An applications course. | | California, San | Tilb Trainereal I bbs, I araner Companing, 1111 applications course. | | Diego | | | University of | For the MS student: Numerical-Analysis (two courses) and 24 additional credits. | | Colorado, Boulder | Students also need to take an out of department sequence where Math is applied. | | University of | 15 credits, either non-degree or part of degree; choose 5 courses from a list; a cis | | Delaware | algorithms course is required; one of a list of three numerical methods class is | | Delaware | required; then three more courses. At least two must be highest level grad class. | | | The courses must be from at least 3 different departments, to make it | | | interdisciplinary. | | University of | See the list at: http://msc.maths.ed.ac.uk/sc/study-programme-sc/compulsory- | | Edinburgh | courses-sc | | University of Illinois | Numerical Analysis, Parallel Programming, Scientific Visualization. | | at Urbana- | Transferred Final Joint, Farance Frogramming, Scientific Visualization. | | Champaign | | | University of Iowa | http://www.amcs.uiowa.edu/index.php?cb=program#new curriculum | | University of | http://www- | | Michigan | ners.engin.umich.edu/areas/scientificcomputing/scientificcomputingoption.pdf | | University of New | Several required courses (parallel computing); electives (many options from | | Mexico | many departments); computational aspect to the thesis; prerequisites at the | | | undergrad level (math, physics, CS). See: | | | http://www.hpc.unm.edu/education/cse-program | | University of Ontario | Note: our program is stand-alone (its requirements are independent of any other | | Institute of | program). Core courses in: 1) Numerical Analysis, 2) Mathematical Modeling, | | Technology (UOIT) | and 3) High Performance Computing, plus 3 elective courses. | | recumology (UOII) | and 3) Tright refrormance Computing, plus 3 elective courses. | | University of | Two semesters of Analysis, Applied Algebra, and Probability and Stochastic | |----------------------|--| | Pennsylvania | processes. | | University of | The core curriculum coursework integrates the three areas of CmE: | | Tennessee, | Computational modeling and simulation for engineering analysis and design; | | Chattanooga | applied scientific computing; applied computational mathematics. All student | | | research is integrated with faculty team research, including significant student | | | interaction with multiple CmE faculty members. The program is open to | | | students with a baccalaureate degree in engineering, science, or mathematics. | | University of | See http://igmcs.utk.edu/requirements/ | | Tennessee, Knoxville | | | University of Utah | (1) http://www.ces.utah.edu/course_info.html (2) | | | http://www.cs.utah.edu/graduate/scientific/ | | University of | An pre-introductory course on Linux and R. A module on data structures and | | Warwick | algorithms (which also teaches a structured approach to code development). A | | | module on OpenMP and MPI. A selection of approved masters-level courses | | | offered by other departments within our Science faculty. | | University of | 6 courses and a 4-month research project (1-year Master's). | | Waterloo | | - 80% of participants encourage or require multidisciplinary co-advising of PhD or MS theses. - 9.6% require an internship program for graduate students. - Resources available in the programs surveyed: - o 47% have career development workshops - o 96% have guest speakers - o 77% have visitors - o 62% have travel support for students - 54% of programs are administered as a separate entity - 46% of programs reside within a department - 60% of programs receive resources for administrative support - o 44% of programs provide release time for faculty to administer the program - o 75% of programs have secretarial support - 78% of programs have website support, of which: - o 73% have development support - o 95% have maintenance support - 49% of programs have support for graduate students, of which: - o 28% have CSE fellowships - o 68% have TA positions - o 76% have RA positions • 64% of programs receive computing resources: | Institution | Computing Resources | |------------------------|--| | California Institute | These kinds of resources are provided by the student's Ph.D. option (major). | | of Technology | | | College of William | Access to a computational cluster of a few hundred processors (which was started | | and Mary | as part of this program), but currently administered by the University. | | EPFL Lausanne | Access to EPFL Cluster for specific courses or projects. | | ETH Zurich, | Free access to high performance computers. | | Switzerland | | | Georgia Institute | Campus-wide HPC facilities, CSE computing facilities. | | of Technology | | | Harvard | HPC cluster (576 cores); GPGPU cluster (16 CPU nodes + 32 GPUs); 2 | | University | workstations; cloud resources. These resources are not dedicated but are available | | | to other SEAS faculty, students, and collaborators. Harvard also provides a shared | | K.U. Leuven | research computing facility with 13,000+ cores. | | K.U. Leuven | PC rooms widely available throughout the city, some dedicated to the departments involved with all relevant scientific software installed. Supercomputing resources | | | also available. | | Michigan | 256 core Infiniband interconnected computer. | | Technological | 20 0 0010 11111110 1111 1110 1110 1100 11 | | University | | | Middle East | High performance computational computer systems, laboratories. | | Technical | | | University | | | National Institute | Computational labs, etc. | | of Technology, | | | Calicut, India | | | New York | The systems administrators at the Courant Institute manage Courant's own (very | | University | substantial) computing resources. | | Novosibirsk State | Access to Siberian Supercomputer Center. | | University RWTH Aachen | 220 come abuston VD facility and UDC resources | | University | 320 core cluster, VR facility, and HPC resources. | | Simon Fraser | Basic computing facilities provided by the university. Computing labs available | | University | through the Pacific Institute for the Mathematical Sciences. Supplemental | | Oniversity | computing resources funded by faculty research grants and NSERC equipment | | | grants. High performance computing resources available through the WestGrid | | | computing consortium. | | Stanford | We have a compute cloud, shared memory machines for data-intense computing, | | | and a GPU cluster. Funding comes from the School of Engineering as well as | | | industry (NVIDIA in particular). | | Technische | Access to computer facilities of the university, high performance computing. | | Universität | | | Braunschweig | | | The University of | Substantial computing resources are provided through the Institute, including | | Texas at Austin | desktops, Linux clusters, a visualization lab, and supercomputer clusters. | | The University of | ICES CPU time, other advisors have access to supercomputing resources. | | Texas at El Paso | | | Trinity College | Linux cluster, GPGPU system | |--------------------------|---| | Dublin | | | TU Dortmund | Usual collection of student computer pools dedicated HPC workstations (GPUs, | | | etc.) access to medium-scale 2000+ core machine if needed for seminar/thesis | | | work. | | University of | Access to the Blue Crystal supercomputer (>400 nodes of quad-core x86, | | Bristol | Infiniband interconnect). Also 4 dual GPU nodes (Tesla C2050). | | University of | Access to campus network, access to a large parallel processor. | | Colorado-Boulder | | | University of | University cluster access and GPU workstations. | | Edinburgh | | | University of | Access to a computing cluster with 3600 cores. | | Illinois at Urbana- | | | Champaign | | | University of Iowa | Computers in labs and student offices. | | University of New | Provided by CARC free of charge, with support from UNM OVPR. See: | | Mexico | http://www.hpc.unm.edu/systems-table | | University of | Workstations for the students, access to larger scale computing if needed. | | Pennsylvania | | | University of | The SimCenter and its computational engineering program occupy a dedicated | | Tennessee, | 31,000 sq. ft. research and education facility adjacent to the UTC campus. This | | Chattanooga | facility includes faculty offices, student cubicles, a 1,500 sq. ft. computer room, | | | classrooms, conference/meeting room, multimedia auditorium, research library, | | | and other workspace. The SimCenter has a dedicated, in-house designed and | | | operated computing facility consisting of multiple diskless Linux clusters (up to | | | 1,300 cores) and extensive computing infrastructure for data storage, networking, | | TI | and desktop computers. | | University of | Access to NSF Kraken system from the University of Tennessee. | | Tennessee, | | | Knoxville | A constant a local aborton (2,000 comes) local aborton (2,000 comes) | | University of
Warwick | Access to a local cluster (3,000 cores), local cluster of workstations, and desktop Linux workstations. | | | | | University of | Desktop workstations for students and access to faculty computing resources. | | Waterloo | | ## **Undergraduate Programs** - 14 (23%) participants have an undergraduate program in CSE - 13 (93%) of these undergraduate programs have websites: | Institution | Website | |------------------------------------|---| | Brockport, State University | http://www.brockport.edu/cps/ | | of New York | | | ETH Zurich, Switzerland | http://www.rw.ethz.ch/bachelor/index | | George Mason University | http://cds.gmu.edu/content/bs-computational-and-data-sciences/ | | Illinois State University | http://www.phy.ilstu.edu/programs/computer_physics/ | | Moscow State University | http://www.srcc.msu.ru/nivc/index_engl.htm | | RWTH Aachen University | http://www.ces.rwth-aachen.de/ | | Seoul National University | http://uipcs.snu.ac.kr/main.php | | Stanford | http://mcs.stanford.edu/ | | Technical University of | http://www.mat.dtu.dk/English/Education/CivilBachelor.aspx | | Denmark | | | The University of Texas at | http://www.ices.utexas.edu/programs/cse-certificate/ | | Austin | | | TU Dortmund | http://www.tu- | | | dortmund.de/uni/Einstieg/studienangebot/kurzinfos/1fach/natur/fk01_te | | | <u>chnomath_bama/index.html</u> | | University of Colorado, | http://amath.colorado.edu/cmsms/index.php?page=undergraduate- | | Boulder | <u>program</u> | | University of Waterloo | http://www.math.uwaterloo.ca/navigation/CompMath/ | Types of undergraduate programs: o A degree in CSE: 11 o A minor in CSE: 1 o A certificate in CSE: 2 o A track in CSE: 1 • Program inception dates: - Average time to establish undergraduate program: 2.3 years - Student Enrollment and graduation for undergraduate programs - o Undergraduate programs - Current enrollment: 70 mean; 40 median - Mean Gender Distribution: 24% female, 76% male - Graduates: 93 mean; 50 median - Mean Gender Distribution: 23% female, 77% male - 100% of the CSE undergraduate programs have a core curriculum: | Institution | Curriculum | |--------------------------|--| | Brockport, State | Prerequisites (14 Credits) - MTH 201 Calculus I (4), MTH 202 Calculus II (4), | | University of New | MTH 281 Discrete Mathematics (3), CSC 120 Introduction to Computer | | York | Science (3). Required Courses (47 credits) – Mathematics courses (13 credits): | | | MTH 203 Calculus III (4), MTH 255 Differential Equations (3), MTH 324 | | | Linear Algebra (3), MTH 346 Probability and Statistics (3); Computer Science | | | Courses (4 credits): CSC 203 Fundamentals of Computer Science I (4); | | | Computational science Courses (24 credits): CPS 201 Computational Tools I | | | (3), CPS 202 Computational Tools II (3), CPS 303 High Performance | | | Computing (3), CPS 333 Scientific Computing (3), CPS 304 Simulation and | | | Modeling (3), CPS 404 Applied and Computational Mathematics I (3), CPS | | | 405 Applied and Computational Mathematics II (3), CPS 433 Scientific | | | Visualization (3); Elective Courses (6 credits). | | ETH Zurich, | Basic math and natural sciences courses, numerical analysis core courses, field | | Switzerland | of specialization, electives, BSc thesis. | | George Mason | 18 credits in CDS core courses, 1 credit in IT ethics, 7 credits in computer | | University | science, 8 credits in physics, 20 credits in mathematics, 3 credits in statistics. | | Illinois State | 2 CS courses, 3 dedicated Computational Physics courses, computing in other | | University | physics courses. | | Louisiana State | Item 6a at: https://www.math.lsu.edu/ugrad/requirements/. There are four core | |--------------------|---| | University | numerical courses: Numerical Linear Algebra, Numerical Analysis, Numerical | | | Differential Equations, and Numerical Optimization. | | RWTH Aachen | 210 credits. | | University | | | Seoul National | Understanding Computational Sciences, Capstone Research in Computational | | University | Sciences, Theory and Practice in Computational Sciences, History of | | | Computational Sciences, Modeling and Simulation in Computational Sciences, | | | Computational Science Models and Data, Introduction to Scientific | | | Visualization, Computational Social Sciences, Topical Research in | | | Computational Sciences. | | Stanford | 75 units (approximately 20-25 courses) in math and computing, with enough | | | room left for students to specialize in an application area. | | The University of | 18 credit hours coursework and Scientific Computing Project supervised by | | Texas at Austin | program faculty. | | TU Dortmund | For MS/BSc: 60% math/computing, 40% engineering (focus within engineering | | | chosen by the students, examples include classical continuum mechanics but | | | also life sciences etc.). For BSc: 60% math includes classical applied math | | | curriculum with opportunities to specialize early, and mandatory computing | | | portions. Highlight: 2-semester-10-student project group covering the entire | | | CSE cycle from engineering problem to mathematical modeling to | | | algorithms/discretisations to implementations (with HPC in mind) to post | | | processing. For MS: advanced topics with only loose rules on what to | | | specialize in/where to stay in general. | | University of | Regular undergraduate curriculum. | | Colorado, Boulder | | | University of | Faculty core + 4 computational math core courses + electives (some | | Waterloo | computational mathematics, some mathematics, some general). | | | | • 15% of programs require an internship for undergraduate students